Lateralized alpha-band cortical networks regulate volitional modulation of beta-band sensorimotor oscillations

نویسندگان

  • Mathias Vukelic
  • Robert Bauer
  • Georgios Naros
  • Ilias Naros
  • Christoph Braun
  • Alireza Gharabaghi
چکیده

Sensorimotor rhythms (SMRs) are oscillatory brain activities in the α- and β-bands across the sensorimotor regions of the brain. Each frequency band has its own specific function. The α-band oscillations are closely related to intrinsic cortical networks, whereas oscillations in the β-band are relevant for the information transfer between the cortex and periphery, as well as for visual and proprioceptive feedback. This study aimed to investigate the interaction between these two frequency bands, under the premise that the regional modulation of β-band power is linked to a cortical network in the α-band. We therefore designed a procedure to maximize the modulation of β-band activity over the sensorimotor cortex by combining kinesthetic motor-imagery with closed-loop haptic feedback. The cortical network activity during this procedure was estimated via the phase slope index in electroencephalographic recordings. Analysis of effective connectivity within the α-band network revealed an information flow between the precentral (premotor and primary motor), postcentral (primary somatosensory) and parietal cortical areas. The range of β-modulation was connected to a reduction of an ipsilateral sensorimotor and parietal α-network and, consequently, to a lateralization of this network to the contralateral side. These results showed that regional sensorimotor oscillatory activity in the β-band was regulated by cortical coupling of distant areas in the α-band.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection.

UNLABELLED To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythm...

متن کامل

Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations.

Our perception is facilitated if we know where and when a sensory stimulus will occur. This phenomenon is accounted for by spatial and temporal orienting of attention. Whereas spatial orienting of attention has repeatedly been shown to involve spatially specific modulations of ongoing oscillations within sensory cortex, it is not clear to what extent anticipatory modulations of ongoing oscillat...

متن کامل

Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD) patients, rhythmic auditory stimulation (RAS) induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation a...

متن کامل

Beta Peak Frequencies at Rest Correlate with Endogenous GABA+/Cr Concentrations in Sensorimotor Cortex Areas

Neuronal oscillatory activity in the beta band (15-30 Hz) is a prominent signal within the human sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest an influence of GABAergic interneurons on the generation of beta band oscillations. Accordingly, studies in humans have demonstrated a correlation between GABA concentrations and power of beta band oscillation...

متن کامل

Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions.

Rhythmic neural activity within the alpha (8-12 Hz) and beta (15-25 Hz) frequency bands is modulated during actual and imagined movements. Changes in these rhythms provide a mechanism to select relevant neuronal populations, although the relative contributions of these rhythms remain unclear. Here we use MEG to investigate changes in oscillatory power while healthy human participants imagined g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2014